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Abstract 14 

RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic 15 

Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides.  16 

SST effectively lengthens the extreme rainfall record through temporal resampling and spatial 17 

transposition of observed storms from the surrounding region to create many extreme rainfall 18 

scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but 19 

require long records to describe the distribution of rainfall depth and duration and do not provide 20 

information regarding rainfall space-time structure, limiting their usefulness to small scales. In 21 

contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and 22 

output rainfall scenarios incorporate detailed space-time structure from remote sensing.  Thanks 23 

to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries 24 

lacking ground measurements, though results are impacted by remote sensing errors.  RainyDay 25 

can be useful for hazard modeling under nonstationary conditions.   26 
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Software Availability 31 

Name of Software: RainyDay Rainfall Hazard Modeling System 32 

Developer: Daniel B. Wright 33 

Contact: Daniel B. Wright; Address: Room 1269 Engineering Hall, 1415 Engineering Drive, 34 

Madison, WI 53706, USA; Email: danielb.wright@wisc.edu 35 

 36 

Year first available: 2015 37 

 38 

Required hardware and software: RainyDay requires Python 2.7 or newer (not tested with Python 39 

3.0 or higher) with Numpy and Scipy.   The Netcdf4 and GDAL APIs and Python libraries are 40 

also required.  RainyDay will run on Macintosh, Linux, and Windows machines with the proper 41 

APIs and Python libraries. 42 

 43 

Cost: Free.  RainyDay is currently available by request at 44 

https://bitbucket.org/danielbwright/rainyday. Open-source release under version 3.0 of the GNU 45 

General Public License (http://www.gnu.org/licenses/gpl-3.0.en.html) is planned, with 46 

unrestricted public access to the code repository.   47 

48 
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1. Introduction 49 

Rainfall-driven hazards such as floods and landslides are the most common natural disasters 50 

worldwide, and amongst the most devastating. A growing number of computational hazard 51 

models are available to transform extreme rainfall inputs into hazard predictions, including 52 

distributed hydrologic models for the movement of water into and through river systems (e.g., 53 

Smith et al., 2004); hillslope stability and run-out models  for landslide initiation and subsequent 54 

motion (e.g. Brenning, 2005 and Preisig and Zimmermann, 2010, respectively); and hydraulic 55 

models for flood wave propagation in channels and floodplains ( e.g., Horritt and Bates, 2002). 56 

These models have seen significant advances in recent decades, and have become key 57 

components in probabilistic hazard and risk assessment in fields such as natural catastrophe risk 58 

insurance, infrastructure design, and land-use planning. The hazard predictions produced by 59 

these models tend to be highly sensitive to the amount, timing, and spatial distribution of rainfall 60 

inputs. Unfortunately, progress on developing realistic rainfall inputs for probabilistic hazard and 61 

risk assessment has been relatively limited. This paper introduces RainyDay, a Python-based 62 

platform that addresses this shortcoming by coupling rainfall remote sensing data from satellites 63 

or other sources with a technique for temporal resampling and spatial transposition known as 64 

Stochastic Storm Transposition (SST) to generate highly realistic probabilistic rainfall scenarios. 65 

 66 

Rainfall inputs for long-term hazard and risk assessment require a probabilistic description of 67 

three interrelated components: duration, intensity, and space-time structure. Efforts to jointly 68 

model these components are usually referred to as rainfall frequency analysis, a simple term that 69 

belies the complexity of the physical phenomena and analytical methods involved. The 70 

probability structure of the first two components, rainfall duration and intensity, has been a focus 71 

of research and application for decades (see U.S. Weather Bureau, 1958 and Yarnell, 1935 for 72 

early examples). These two components are strongly linked and together they determine the 73 

probability distribution of rainfall volume (or depth) at a point or over an area. The third 74 

component, space-time structure, describes the spatial and temporal variability of rainfall and is 75 

determined by storm size, horizontal velocity, and the temporal evolution of spatial rainfall 76 

coverage. Space-time structure can thus be understood as describing the “when” and “where” of 77 

extreme rainfall, whereas intensity and duration describe “how much.”   78 



 4 

 79 

Rainfall space-time structure can be an important hazard determinant. For example, a rainstorm 80 

that is short-lived and small in spatial extent may pose a significant flash flood threat in a narrow 81 

mountain valley or urban area, but may not represent a hazard on a larger river system. 82 

Conversely, a month-long rainy period could lead to flooding on a major river due to the gradual 83 

accumulation of water in soils, river channels, and reservoirs, but may never feature a short-lived 84 

“burst” of rainfall sufficiently intense to cause flash flooding at smaller scales. Similarly, a storm 85 

that covers a large area or passes over a series of valleys could lead to more widespread landslide 86 

or debris flow occurrences than a smaller or stationary storm. Rainfall space-time structure and 87 

its importance as a hazard trigger, therefore, must be understood within the context of the 88 

particular geography and scale in question. Due to its complexity, rainfall space-time structure 89 

has traditionally been less well understood than intensity and duration, and its representation in 90 

hazard modeling has been less sophisticated.  91 

 92 

The probability distribution of rainfall volume for a given duration is usually derived from rain 93 

gages and distilled into Intensity-Duration-Frequency (IDF) curves, such as those provided by 94 

the National Oceanic and Atmospheric Administration’s (NOAA) Atlas 14 (Bonnin et al., 2004). 95 

Long records (spanning many decades) are generally needed to define the extreme tail of such 96 

distributions. The challenge of measuring extreme rainfall over long time periods and over large 97 

areas using rain gages has hindered IDF estimation in many developed countries, while the lack 98 

of data in poor countries and in inaccessible terrain means that IDF estimation using such 99 

methods is virtually impossible in many locations. Furthermore, the ability to measure rainfall 100 

space-time structure at a high level of detail using dense networks of rain gages is nonexistent 101 

outside of a handful of wealthy cities and research-oriented observation networks. 102 

“Regionalization,”—the pooling of hazard information over a larger area in order to inform 103 

analyses at particular locations (see, e.g. Alexander, 1963 for an early discussion of rainfall 104 

regionalization and Stedinger et al., 1993 for a review)—has helped with IDF estimation using 105 

short records in areas where rain gage densities are moderate or high. These techniques offer 106 

little help, however, in parts of the world where rain gages are few or nonexistent, and do not 107 

offer a framework for incorporating rainfall space-time properties into hazard estimation. Even 108 

where long rainfall records do exist, nonstationarity due to climate change may mean that earlier 109 
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portions of the record are no longer representative of current or future IDF properties (e.g. Cheng 110 

and AghaKouchak, 2014). 111 

 112 

Several techniques, which generally fall under the term of design storm methods, are used in 113 

long-term hazard estimation to link IDF properties to space-time structure for probabilistic flood 114 

hazard assessment (commonly referred to as flood frequency analysis). One central design storm 115 

concept is to link rainfall duration to rainfall intensity via a measure of flood response time, such 116 

as the time of concentration (e.g. McCuen, 1998). Another attempts to estimate area-averaged 117 

rainfall from point-scale rainfall estimates using area reduction factors (ARFs; U.S. Weather 118 

Bureau, 1958). Yet another uses dimensionless time distributions such as the family of U.S. Soil 119 

Conservation Service 24-hour rainfall distributions (e.g. McCuen, 1998). Each of these methods 120 

is highly empirical, laden with assumptions (see Wright et al., 2014a; Wright et al., 2014b; 121 

Wright et al., 2013), valid only in certain contexts, and often misunderstood or misused (K. 122 

Potter, personal communication, May 6, 2015).  123 

 124 

SST explicitly links IDF properties rainfall space-time properties, providing certain advantages 125 

over design storm methods. Similar to other regionalization techniques, SST aims to effectively 126 

“lengthen” the period of record by using nearby observations, albeit using a fundamentally 127 

different approach involving temporal resampling and spatial transposition of rainstorms drawn 128 

from a catalog of observed rainfall events from the surrounding region. The inclusion of nearby 129 

storms at least partially addresses the difficulty of accurately estimating rainfall hazards using 130 

short records. SST can be used to estimate rainfall IDF properties and also to facilitate modeling 131 

of interactions of rainfall space-time structure with geographic features (such as hillslopes and 132 

river networks) at the appropriate spatial and temporal scales.  It accomplishes this by generating 133 

large numbers of extreme rainfall “scenarios,” each of which has realistic rainfall structure based 134 

directly on observations.  135 

 136 

Alexander (1963), Foufoula-Georgiou (1989), and Fontaine and Potter (1989) describe the 137 

general SST framework, while Wilson and Foufoula-Georgiou (1990) use the method for rainfall 138 

frequency analysis and Gupta (1972) and Franchini et al. (1996)  use it for flood frequency 139 

analysis. In those days, however, the method was of limited practical use due to the lack of 140 
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detailed rainfall datasets with large areal coverage. Those studies also did not focus on the 141 

aspects of SST related to rainfall space-time structure nor its implications for hazard modeling.  142 

 143 

The recent advent of satellite-based remote sensing provides a relatively low-cost means of 144 

measuring extreme rainfall over large parts of the globe at moderately high spatial and temporal 145 

resolution (30 minutes to 3 hours, 4 km to 25 km), while ground-based weather radar offers 146 

higher-resolution estimates (5-60 minutes, typically 1 to 4 km) over smaller regions. While the 147 

accuracy of rainfall remote sensing can be poor (particularly in cases of satellite-based estimates, 148 

e.g. Mehran and AghaKouchak, 2014; and mountainous regions, e.g. Nikolopoulos et al., 2013, 149 

Stampoulis et al., 2013), such data nonetheless offer unprecedented depictions of rainfall over 150 

large areas. This creates a variety of opportunities for hazards research and practice at various 151 

scales, ranging from forecasting and post-event analysis to long-term hazard assessment.  152 

 153 

In the context of SST, the ongoing accumulation of remote sensing data to lengths of 10-20 years 154 

or more “unlocks” many of the as-yet unrealized opportunities offered by SST. Wright et al. 155 

(2013) demonstrated the coupling of SST with a 10-year high resolution radar rainfall dataset for 156 

IDF estimation, and the method was extended to flood frequency analysis for a small urban 157 

watershed using a distributed hydrologic model in Wright et al. (2014b). These two papers, along 158 

with Wright et al. (2014a) show that commonly-used design storm practices (ARFs, 159 

dimensionless time distributions) have serious shortcomings in representing the multi-scale 160 

space-time structure of extreme rainfall and critical interactions with of this structure with 161 

watershed and river network features. Wright et al. (2014b) also show that when SST is coupled 162 

with rainfall remote sensing data and a distributed hydrologic model, it can reproduce the role 163 

that this structure plays in determining multi-scale flood response. The RainyDay software 164 

described in this paper was developed to facilitate the use of SST in conjunction with rainfall 165 

remote sensing data. 166 

 167 

Though SST was developed in the context of flood hazard estimation, it may prove useful for 168 

rainfall-triggered landslides and other mass movements, subject to the limited accuracy of 169 

remote sensing data in steep terrain and other limitations that will be discussed subsequently.  170 

Rainfall space-time structure governs the temporal distribution of rainfall volume onto individual 171 
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hillslopes, as well as the number of hillslopes subject to rainfall. In addition, steep landslide-172 

prone terrain often has poorer rain gage coverage than lowland areas due to limited accessibility, 173 

suggesting that remote sensing rainfall estimates are potentially useful in such regions, 174 

particularly if improvements in accuracy can be realized (e.g. Shige et al., 2013).  175 

 176 

Section 2 provides a description of the SST methodology. Section 3 discusses the specific 177 

implementation of SST in RainyDay, and some of the software’s important features. Section 4 178 

provides sample results from RainyDay and sensitivity analyses using different input rainfall 179 

datasets for rainfall and flood frequency analysis in order to illustrate its capabilities and some of 180 

its limitations, including for flood frequency analysis in nonstationary conditions. Section 5 181 

includes discussion and concluding remarks. 182 

2. The SST Methodology 183 

In this section, we provide a step-by-step methodology for SST-based rainfall frequency analysis 184 

for a user-defined geographic “area of interest,” A of arbitrary shape. Higher-level description of 185 

software features is left to Section 3, but it merits mention that in RainyDay, A can be a single 186 

remote sensing pixel, a rectangular area containing multiple pixels, or a contiguous area defined 187 

by a user-supplied polygon shapefile.  188 

 189 

The following five steps describe the SST methodology, as implemented in RainyDay: 190 

1. Identify a geographic transposition domain A’ that encompasses the area of interest A. 191 

One could confine A’ to regions with homogeneous extreme rainfall properties, (e.g. flat 192 

areas far from large water bodies and topographic features). However, such homogeneity 193 

would likely be difficult to rigorously determine in practice and regardless, such strict 194 

interpretation is likely to be overly limiting. RainyDay offers several diagnostic aids, 195 

discussed in Section 3.3, that help the user to understand rainfall heterogeneity over the 196 

region A’ and to improve the performance of the SST procedure in cases where rainfall 197 

heterogeneities do exist. Additional issues related to the selection of A’ are explored in 198 

Section 4.3. 199 

 200 
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2. Identify the largest m temporally non-overlapping storms in A’ from an n-year rainfall 201 

remote sensing dataset, in terms of rainfall accumulation of duration t and with the same 202 

size, shape, and orientation of A. For example, the principal axis of the Turkey River 203 

watershed in northeastern Iowa in the central United States is oriented roughly northwest-204 

southeast and has an area of 4400 km2. In this case, the m storms are those associated 205 

with the m highest t-hour rainfall accumulations over an area of 4400 km2 with the same 206 

size, shape, and orientation as the Turkey River watershed. We refer to this set of storms 207 

henceforth as a “storm catalog,” with the same geographic extent as A’ and the same 208 

spatial and temporal resolution as the input rainfall data. We refer to the m storms in the 209 

storm catalog henceforth as “parent storms.” In RainyDay, the user can specify whether 210 

to exclude certain months (such as wintertime) from the storm catalog. Previous studies 211 

have shown that there can be low bias introduced in high-exceedance probability (i.e. 212 

frequent, low-intensity) events if m is small (e.g. Foufoula-Georgiou, 1989; Franchini et 213 

al., 1996; Wilson and Foufoula-Georgiou, 1990; see Wright et al., 2013 for a discussion). 214 

The sensitivity of SST results to the choice of m and A’ is explored in detail in Section 215 

4.3, but m ≈ 10n generally minimizes the low bias for frequent events, and would likely 216 

be a good starting point for new analyses. Low exceedance probability (i.e. rare) events 217 

are less sensitive to the choice of m (see Section 4.3).  218 

 219 

In RainyDay, duration t is a user-defined input, and as long as t is neither very short nor 220 

very long relative to the time scales of hazard response in A, subsequent hazard modeling 221 

results will be relatively insensitive to the chosen value. In this respect, the duration t in 222 

SST differs conceptually from design storm methods, in which hazard response is 223 

intrinsically sensitive to the user-specified duration, and this feature is indeed one of the 224 

chief advantages of SST over design storm methods for multi-scale flood hazard 225 

estimation (see Wright et al., 2014b for analysis and discussion). In the case of SST-226 

based flood frequency analysis, t should be at least as long as the time of concentration 227 

and preferably somewhat longer. 228 

 229 

3. Randomly generate an integer k, which represents a “number of storms per year.” In 230 

previous SST literature, the assumption was made that k follows a Poisson distribution 231 
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with a rate parameter λ storms per year. The m parent storms are selected such that an 232 

average of λ = m/n storms per year are included in the storm catalog. For example, if m = 233 

100 storms selected from a ten-year remote sensing dataset, then λ = 100/10 = 10.0 234 

storms per year. RainyDay will generate k using either the Poisson distribution or an 235 

empirical distribution, discussed in Section 3.3. If the Poisson distribution is selected, 236 

RainyDay will automatically calculate λ based on user-specified m and the length of the 237 

input dataset.   238 

 239 

4. Randomly select k parent storms from the storm catalog. For each selected parent storm, 240 

transpose all rainfall fields associated with that storm by an east-west distance Δx and a 241 

north-south distance Δy, where Δx and Δy are drawn from the distributions DX(x) and 242 

DY(y) which are bounded by the east-west and north-south extents of A’, respectively. 243 

The motion and structure of the parent storm is unaltered during transposition and only 244 

the location is changed. The distributions DX(x) and DY(y) were taken to be uniform in 245 

Wright et al. (2013) and Wright et al. (2014b), but RainyDay offers additional options, 246 

described in Section 3.3. We illustrate this step schematically in Figure 1. For each of the 247 

k transposed storms, compute the resulting t-hour rainfall accumulation averaged over A.  248 

 249 

Step 4 can be understood as temporal resampling and spatial transposition of observed 250 

storm events within a probabilistic framework to synthesize one year of heavy rainfall 251 

events over A’ and, by extension, over A.  RainyDay and previous SST efforts retain the 252 

largest (in terms of rainfall intensity) of the k events for subsequent steps and discard the 253 

k-1 remaining events, though in principle these events could be retained.  The single 254 

retained storm can be understood as a “synthetic” annual rainfall maximum, analogous to 255 

those annual rainfall maxima that are extracted from rain gage records for rainfall 256 

frequency analysis. It should be noted that these rainfall events do not form a continuous 257 

series, meaning that neither inter-storm periods nor the sequencing of the k storms are 258 

considered. 259 

 260 

5. Repeat steps 3 and 4 a user-specified Tmax, number of times, in order to create Tmax years 261 

of t-hour synthetic annual rainfall maxima for A. RainyDay then assigns each annual 262 
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maximum a rank i according to its rainfall intensity relative to all others.  Each of these 263 

ranked maxima can then be assigned an annual exceedance probability pe
i where pe

i  ≡ 264 

i/Tmax. Exceedance probability pe is the probability in a given year that an event of equal 265 

or greater intensity will occur. The “return period” or “recurrence interval” Ti, commonly 266 

used in hazard analysis, is simply Ti
 ≡ 1/pe

i, so if Tmax = 103, it is possible to directly infer 267 

exceedance probabilities of 1.0≥pe≥10-3 (recurrence intervals of 1≤Ti≤103).  Each of these 268 

rainfall events can then serve as one datum of an empirical IDF estimate or as a rainfall 269 

scenario for hazard modeling.  270 

 271 

 272 
Figure 1: Depiction of SST procedure for a single storm consisting of four time intervals t1...t4. The blue 273 
ellipses illustrate the time evolution of an arbitrary rainfall isohyet derived from remote sensing observations, 274 
while the green ellipses show the time evolution of this same isohyet after transposition. Adapted from Wright 275 
et al. (2013). 276 

 277 

3. RainyDay Software 278 

3.1 Overview of Software 279 

We wrote RainyDay to render SST more accessible and to streamline the code for speed and 280 

ease-of-use using Python.  The majority of subroutines utilize the Scipy (Jones et al., 2011) and 281 

Numpy packages (Walt et al., 2011). To enhance speed, certain RainyDay subroutines call C 282 
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code through Scipy’s “weave” functionality 283 

(http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html). Figure 2 shows a schematic of 284 

workflow in RainyDay.  285 

 286 

While the ranking of rainfall events described in Step 5 of the SST methodology in Section 2 is 287 

based on rainfall intensity averaged over A, RainyDay will create NetCDF4 files 288 

(http://www.unidata.ucar.edu/software/netcdf) that contain the transposed rainfall scenarios with 289 

full depictions of rainfall space-time structure at the native spatial and temporal resolution of the 290 

input.  This is an important feature because space-time structure, and not just average rainfall 291 

intensity over area A and duration t, is important in determining hazard response.  For example, 292 

one rainfall scenario may produce a more severe flood response than another scenario, even if it 293 

has a lower overall average rainfall intensity over A and t, due to interactions with watershed 294 

features (see Section 3.2 of this paper for discussion and Wright et al., 2014b for analysis). 295 

 296 

We will provide the RainyDay source code, examples, and user documentation upon request, and 297 

intend to release it under version 3 of the GNU General Public License 298 

(http://www.gnu.org/copyleft/gpl.html) once we have completed sufficient testing and 299 

documentation.  The code is currently not parallelized, but shared-memory parallelization may 300 

be added in the future. Computational time is determined mainly by the size of the input dataset 301 

(record length n, input resolution, and geographic size of A and A’), while other factors, such as 302 

m, t, Tmax, and N can impact runtime.  Computational speed, even without parallelization, is not 303 

prohibitive on a modern desktop or laptop computer (several seconds to several hours for typical 304 

configurations and input datasets). 305 

 306 

To ensure accessibility for users inexperienced with Python, all of the necessary Python modules 307 

are supported within recent versions of the Anaconda Python distribution from Continuum 308 

Analytics (https://store.continuum.io/cshop/anaconda). The user must install NetCDF4 libraries 309 

and any requisite dependencies. If the user wishes to use shapefile functionality, necessary for 310 

defining A to be a shape other than a rectangle or a single rainfall pixel, the GDAL library 311 

(http://www.gdal.org) and any necessary dependencies must also be installed.  312 

http://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
http://www.unidata.ucar.edu/software/netcdf
http://www.gnu.org/copyleft/gpl.html
https://store.continuum.io/cshop/anaconda
http://www.gdal.org/
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 313 
Figure 2: Flow chart demonstrating the workflow of RainyDay. 314 
 315 

3.2 SST Internal Variability 316 

In RainyDay, the user specifies N, the number of Tmax-year long “ensemble members” to be 317 

generated. This enables the examination of “internal variability,” i.e. how much variation in 318 

rainfall intensity is possible for a given pe for a given input rainfall dataset and set of user-319 

defined parameters. For example, if the user specifies Tmax  = 103 and N = 100, then there will be 320 
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100 intensity estimates for each pe between 1.0 and 10-3. RainyDay will automatically generate a 321 

text file containing the results of this rainfall frequency analysis, including the rainfall mean, 322 

minimum, and maximum (or, optionally, a quantile interval) for each pe, computed from the N 323 

ensemble members. 324 

 325 

If the scenarios generated by RainyDay are fed through a hazard model, then the ensemble 326 

spread will propagate through to generate ensemble hazard estimates. A useful and interesting 327 

feature of SST and RainyDay that is not examined in this paper, but is discussed at length in 328 

Wright et al. (2014b), is that the exceedance probability of rainfall and of subsequent hazards can 329 

be decoupled using SST, particularly if some realistic scheme is used to account for the initial 330 

conditions in A (such as soil moisture or baseflow). Consider the example where N=1 and 103 331 

rainfall scenarios (Tmax=103) are created as input to a distributed flood hydrologic model. One of 332 

these rainfall scenarios has pe=0.01 (in terms of watershed-average t-hour rainfall depth over an 333 

area A). Even if initial conditions are kept constant across all Tmax simulations, the pe of the peak 334 

discharge or volume predicted by the model for this particular scenario need not be equal to 0.01, 335 

since the space-time structure of the rainfall scenario and its interactions with watershed and 336 

river network features can dampen or magnify the flood severity. If variability in initial 337 

conditions within the hazard model are considered, this dampening or magnification effect can 338 

be even greater. This property of SST contrasts with design storm methods, which typically 339 

assume a 1:1 relationship between the pe of rainfall and the resulting hazard, though variability in 340 

initial conditions could in principle be used with design storm approaches to produce some 341 

degree of “decoupling” of rainfall and hazard pe. Setting N ≥ 2 allows for examination of 342 

differences in hazard pe for a given rainfall pe, or vice versa, which could lead the way to more 343 

detailed examination of the role of rainfall space-time structure (see Wright et al. 2014b) or 344 

initial conditions in probabilistic hazard estimation. RainyDay provides one simple scheme for 345 

creating variability in initial conditions, described in Section 3.5. 346 

 347 

It should be pointed out that the ensemble spread generated in RainyDay is not completely 348 

comparable to the confidence intervals of more traditional rainfall or flood frequency analyses. 349 

The latter show statistical uncertainty associated with parameter estimation, which can be 350 

derived in different ways (e.g. bootstrapping, profile likelihood, etc.). Therefore, it might not be 351 
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reasonable to expect that the uncertainty ranges produced by RainyDay to be comparable to the 352 

confidence intervals of other IDF estimates. Like nearly all frequency analyses and IDF 353 

estimation methods, the ensemble spread generated by RainyDay does not consider measurement 354 

error, which, as mentioned previously, can be substantial. Since the ensemble spread is for a 355 

given set of user-defined values such as A’ or m, it does not consider uncertainty associated with 356 

these choices. Analyses in Section 4.3 show how such uncertainties can be assessed, but 357 

fundamentally this requires manipulating the size or composition of the storm catalog through 358 

the choice of user-defined values, necessitating multiple distinct runs of RainyDay. 359 

 360 

Ensemble spread is shown throughout Section 4 to illustrate various aspects of SST-based 361 

rainfall and flood frequency analysis. If the user is only interested in examining internal 362 

variability of SST-based rainfall IDF, then the number of ensemble members can be large (e.g. 363 

N≥100). If the user wishes to perform hazard simulations, however, N should be selected with 364 

consideration of the computational cost associated with large numbers of simulations, which can 365 

be substantial depending on the particular hazard model. To help manage the number of 366 

simulations required, the user can specify a rainfall return period threshold, below which output 367 

scenarios will not be created. For example, if the user specifies a 5-year threshold, no rainfall 368 

scenarios with a rainfall depth less than the 5-year return period depth will be written, which 369 

reduces the number of hazard simulations by 80% for a given value of N while still retaining the 370 

most extreme scenarios. 371 

 372 

3.3 Rainfall Heterogeneity and Non-Uniform Spatial Transposition 373 

A common criticism of SST is that its validity is restricted to regions with homogenous extreme 374 

rainfall properties. As previously mentioned, depending on how rigidly this criterion is enforced, 375 

the method would be limited to small, flat regions far from topographic features, water bodies, 376 

etc. It is unclear how homogeneity would be determined, particularly with the paucity of extreme 377 

rainfall data in most regions. Instead, steps can be taken to use SST in more varied geophysical 378 

settings. Regardless of the setting, the selection of A’ requires an understanding of regional 379 

rainfall patterns and of the intrinsic assumptions of SST. Though more work is needed to 380 

understand the geographic limits of the applicability of RainyDay in complex terrain, the work of 381 

England et al. (2014) provides an example of  SST in complex terrain.  382 
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 383 

RainyDay provides several tools to help understand the issue of rainfall heterogeneity, and, to 384 

some extent, to mitigate it. First, RainyDay produces a map showing the location of the rainfall 385 

centroids for all storms in the storm catalog, overlaid on a smoothed field of the spatial 386 

probability of storm occurrence within A’. This spatial probability of occurrence map is 387 

generated by applying a two-dimensional Gaussian kernel smoother to the (x,y) locations of the 388 

rainfall centroids for all the storms in the storm catalog. This smoothed field is then normalized 389 

such that the sum of all grid cells is 1.0, thus creating a two-dimensional probability density 390 

function of storm occurrence. A second plot shows these rainfall centroids overlaid with the 391 

average rainfall per storm across A’. These diagnostic plots assist in understanding regional 392 

variations in storm occurrences and rainfall  over A’. Examples of these diagnostic plots for a 393 

region A’ encompassing most of the state of Iowa in the central United States are shown in 394 

Figure 3. The top panel suggests that storms are somewhat more frequent in the southernmost 395 

third or so of the transposition domain (top panel), along with slightly elevated activity in the 396 

northeast quadrant. The bottom panel shows somewhat higher average storm rainfall in these two 397 

areas. Caution should be taken when drawing firm conclusions from these diagnostic plots, 398 

however, since rainfall heterogeneities evident in both storm occurrences and average storm 399 

rainfall may be the result of spatial biases in rainfall remote sensing estimates or of randomness 400 

in the climate system over the relatively short remote sensing record, rather than from “true” 401 

heterogeneity in the underlying rainfall hydroclimate. 402 

 403 

Additional optional diagnostic outputs include static and animated rainfall maps for each storm 404 

in the storm catalog (not shown). These storm rainfall maps are useful for diagnosing “bad data,” 405 

particularly in rainfall datasets that use ground-based weather radar contaminated by radar beam 406 

blockage and other unrealistic artifacts. RainyDay allows for the exclusion of user-identified 407 

storm periods from subsequent analysis, though anomalous periods must be identified y the user 408 

(i.e. no automatic data quality checking is provided).   409 

 410 

The two-dimensional density function of spatial storm probability of storm occurrence can 411 

optionally be used as the basis for non-uniform spatial transposition (providing the DX(x) and 412 

DY(y) described in Step 4 and Figure 1 in Section 2) so that the spatial distribution of storm 413 
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occurrences will be preserved between the input data and output rainfall scenarios and IDF 414 

estimates. Section 4.3 examines the impact of this optional feature on results for the Iowa study 415 

region, along with potential implications.  416 

 417 

It is important to note that this approach only addresses the spatial heterogeneity of storm 418 

occurrences, not of spatial variations in the climatology of rainfall intensity (due to topography 419 

or other factors). For example, if A’ contains both a flat plain and an adjacent mountain range, 420 

the probability of storm occurrence will vary across A’. This variation will be captured in the 421 

two-dimensional density function of spatial storm probability and, using the optional non-422 

uniform spatial transposition scheme, will be reflected in RainyDay outputs. In this example, 423 

rainfall intensity from these storms will also vary according to the underlying topography. The 424 

current transposition scheme in RainyDay cannot explicitly account for this intensity variation. 425 

This is likely to be a serious constraint in many regions. 426 

 427 

 428 
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 429 
Figure 3: Example of diagnostic plots produced by RainyDay for 24-hour duration rainfall from the Stage IV 430 
rainfall dataset (described in Section 4.1) over a region encompassing the state of Iowa, United States. Top: 431 
shading indicates spatial probability of storm occurrence. Bottom: shading indicates the average rainfall per 432 
storm from the same storm catalog. Black dots show the rainfall centroids for each storm in the storm 433 
catalog. Dot size in both panels indicates relative rainfall storm total rainfall depth. Key RainyDay 434 
parameters: m=150 storms, A’=[40º to 44º N, 90º to 96º W]. A is a single Stage IV rainfall pixel 435 
(approximately 16 km2), Tmax=1000, and t=24 hours. 436 

3.4 Empirical Temporal Resampling 437 

As mentioned in Step 3 of the SST procedure described in Section 2, previous SST work has 438 

employed the assumption that the annual number of storm counts follows a Poisson distribution, 439 

which in turn serves as the basis for the temporal resampling of storms (i.e. for generating the 440 

number of storms per year k that will be spatially transposed). RainyDay supports Poisson-based 441 

resampling, but also allows the use of an empirical distribution. This distribution is derived from 442 



 18 

the number of storms that enter into the storm catalog from each calendar year in the rainfall 443 

input dataset. Then, during the temporal resampling step, k is obtained by randomly selecting one 444 

of these values. This feature may be useful in regions where storm occurrences exhibit strong 445 

clustering (i.e. where there is strong evidence for more storms in some years and fewer in other 446 

years for persistent climatological reasons; e.g., Villarini et al., 2013). Section 4.3 examines the 447 

impact of this choice on SST results. Other discrete probability distributions, such as the two-448 

parameter negative binomial (Pascal) distribution, can also be used to model clustered count 449 

data. RainyDay does not currently use such distributions, since short (typically 10-20 year) 450 

remote sensing records may yield poor parameter estimates stemming from the limited number 451 

of statistical degrees of freedom. 452 

3.5 “Spin-up” of Initial Conditions 453 

A key issue in the modeling of rainfall driven hazards is to adequately represent initial 454 

conditions. In many flood and landslide modeling efforts, the most critical of these initial 455 

conditions is antecedent soil moisture, while other states such as river baseflow and water table 456 

position may also be relevant. Many hydrologic models allow for the specification of such initial 457 

conditions, and thus many design storm-based hazard modeling efforts rely on an assumed soil 458 

moisture state, such as a typical or fully saturated condition. Such assumed approaches have 459 

previously been used with SST (Wright et al., 2014b), and could be combined with the rainfall 460 

scenarios generated via RainyDay. This approach has the downside, however, that the true 461 

variability antecedent soil moisture is not captured in hazard predictions. This is particularly 462 

important in regions in which heavy rainfall does not necessarily occur in the same season as 463 

high soil moisture conditions. A second approach that can capture this variability would be to 464 

derive a distribution of antecedent soil moisture from previous long-term (ideally multi-decadal) 465 

model simulations.   Since there can be substantial variation in how soil moisture is represented 466 

in different hazard models, ideally the same model would be used for these long-term 467 

simulations and for the hazard scenario modeling. RainyDay offers an alternative option, 468 

however, in which initial soil moisture can be “spun up” within the hazard model to represent 469 

seasonally realistic initial conditions without the need for long-term simulation. 470 

 471 

The spin-up procedure is described for a single rainfall scenario. The month of occurrence of the 472 

rainfall scenario is identified based on the “parent storm” that created it. Then RainyDay 473 
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identifies the set of X-day periods (where X is a user-defined spin-up period) preceding all parent 474 

storms that occur within a user-defined number of months from the date of occurrence of the 475 

parent storm. One of those X-day periods is randomly selected and pre-pended to rainfall 476 

scenario. This scheme helps to ensure that spin-up conditions are reasonable for the given 477 

season. It also helps ensure that spin-up conditions have realistic temporal correlations when pre-478 

pended to the rainfall scenario (for example, if there is a historical tendency for several days of 479 

moderate rain prior to heavy storms but several days of heavy rain prior to the main storm 480 

doesn’t have historical precedent, these conditions will be properly represented). It is important 481 

to note, however, that the 10 to 20-year records typical of rainfall remote sensing records may 482 

not capture the full variability of “true” initial conditions.  483 

 484 

This pre-pending procedure creates rainfall scenario output files that are of X+t day duration. 485 

The modeler can then assign an average initial soil moisture condition to initialize each model 486 

run, and use the rainfall scenario as input. Soil moisture within the model will then evolve over 487 

the spin-up period based on the rainfall (or lack thereof), evapotranspiration, and other model-488 

estimated fluxes. It is important to point out that this spin-up procedure has several limitations. 489 

First, it has a storage and computational cost since it can substantially increase the size of the 490 

rainfall scenario output files generated by RainyDay and increase the length of each hazard 491 

simulation. The importance of these limitations depends on the size of A, the resolution of the 492 

input rainfall dataset, and the computational burden of the hazard model. In Section 4.2, for 493 

example, we limit X to 6 days, for a total rainfall duration of 10 days. This spin-up period is 494 

likely sufficient to spin up moisture in the upper soil layers, but not to fully establish baseflow or 495 

deeper groundwater flow. The modeler should evaluate the tradeoffs between longer X and the 496 

associated storage and computational costs. 497 

3.6 Parametric Rainfall Intensity 498 

Instead of relying on the rainfall intensity derived from a remote sensing input dataset, a user 499 

might prefer to use a parametric distribution to impose rainfall depths on the rainfall output 500 

scenarios. RainyDay supports this option. The user can supply a t-hour rainfall depth 501 

distribution.  This distribution is then applied to the output rainfall scenarios via a normalization 502 

procedure that assumes that the supplied distribution corresponds to the annual maximum t-hour 503 

rainfall intensity for a single rainfall grid cell.  Rainfall space-time structure is still derived from 504 
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the remote sensing data. It should be noted, however, that when the resolution of the input 505 

remote sensing dataset is coarse relative to the spatial coverage of the rainfall measurement 506 

device upon which the parametric distribution is based (for example, the 16-625 km2 footprint of 507 

many satellite rainfall datasets relative to the 0.1 m2 sampling area of a single rain gage), this 508 

approach may be problematic. This procedure is also problematic in regions where such 509 

parametric rainfall distributions might be the synthesis of “mixture distributions” of distinct 510 

storm types in which rainfall intensity is intrinsically linked to rainfall space-time structure  (e.g. 511 

Smith et al., 2011), since RainyDay does not distinguish between different storm types. 512 

Currently only the three-parameter generalized extreme value distribution (Walshaw, 2013) is 513 

supported, though it would be straightforward to add additional choices. 514 

4. Rainfall and Flood Case Studies 515 

4.1 Rainfall IDF 516 

We generated IDF results for six durations from 3 to 96 hours over a range of pe between 0.5 and 517 

10-3 using RainyDay for single rainfall grid cells in the vicinity of Iowa City, Iowa (Figure 4) 518 

using rainfall data from Stage IV (Lin and Mitchell, 2005) and version 7.0 of the Tropical 519 

Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA; Huffman et al., 520 

2010). Stage IV is available through the National Weather Service (NWS) National Center for 521 

Environmental Prediction and provides hourly, 4 km resolution rainfall estimates by merging 522 

data from the NWS Next-Generation Radar network (NEXRAD; Crum and Alberty, 1993) with 523 

rain gages and, in some instances, satellite rainfall estimates.  Stage IV has been extensively used 524 

in studies of extreme rainfall and flooding. All Stage IV analyses in this paper use data from 525 

2002 to 2014. TMPA merges passive microwave, active radar, and infrared observations from 526 

multiple satellites to create a near-global (±50° latitude) rainfall dataset with 3-hourly, 0.25° 527 

(approximately 25 km) resolution. Unless otherwise noted, TMPA analyses this study uses the 528 

final “research version” of TMPA from 1998-2014, which includes a monthly rain gage-based 529 

bias correction. For the results in Figure 4, and most subsequent analyses in this study, A’ is the 530 

rectangular area shown in Figure 3. A is set to a single rainfall pixel and each run consists of 100 531 

ensemble members (N=100), producing 100 estimates for each pe. We compare these results with 532 

rain gage-based IDFs from NOAA Atlas 14. Atlas 14 uses L-moment regionalization techniques 533 
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to combine observations from large number of rain gages. The Atlas 14 analysis for Iowa uses 534 

369 rain gages, many of which have records beginning in the late 19th century. 535 

 536 

The range of IDF durations shown in Figure 4 emphasize that RainyDay is flexible in terms of 537 

the selection of duration t. RainyDay-based IDF estimates using Stage IV exhibit slight 538 

systematic underestimation relative to Atlas 14 across a range of pe except for at the 96-hour 539 

duration, where there is a close match. RainyDay-based IDF estimates using TMPA, meanwhile, 540 

closely match Atlas 14 for high pe (except at the 3-hour scale) and underestimates for low pe for 541 

all durations. Underestimation using RainyDay may be attributed to the mismatch in spatial 542 

resolution of the remote sensing data (approximately 16 km2 for Stage IV and 625 km2 for 543 

TMPA) and the rain gages (approximately 0.1 m2). We have refrained from using ARFs to 544 

convert the Atlas 14 point IDF estimates into area-averaged IDFs, since the ARF concept has 545 

practical and conceptual limitations (see Wright et al., 2014a). Both the slight overestimation of 546 

rainfall depth from TMPA (relative to Stage IV) for more frequent events, and the 547 

underestimation for more rare events using both datasets, could potentially be explained by 548 

conditional bias (i.e. bias that is dependent on rain-rate; Ciach et al. 2000, see Habib et al., 2009 549 

for evidence of conditional biases in TMPA). The convergence between Stage IV-based 550 

RainyDay IDFs and Atlas 14 with increasing duration is consistent with both conditional bias 551 

and spatial mismatch effects, both of which are known to diminish with increased temporal 552 

aggregation. While not definitive, the results in Figure 4 do not clearly point to shortcomings 553 

associated with the SST procedure itself.    554 

 555 

In order to highlight both the potential for IDF estimation and probabilistic hazard assessment in 556 

data-sparse regions using RainyDay with satellite remote sensing, and some of the associated 557 

challenges, we compare 24-hour IDF curves generated using RainyDay for various satellite 558 

rainfall datasets for the vicinity of Iowa City (Figure 5). This comparison includes two versions 559 

of TMPA: the aforementioned final version which includes monthly rain gage-based bias 560 

correction, and TMPA-RT, which is produced in near real-time, does not feature bias correction, 561 

and runs from 2000-2014. It also includes two versions of the 30-minute resolution, 8 km 562 

Climate Prediction Center (CPC) Morphing Technique (CMORPH; Joyce et al., 2004): 563 

CMORPH Corrected, which uses a daily rain gage-based bias correction scheme, and CMORPH 564 
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Raw, which does not. Finally, it includes the 60-minute, approximately 4 km version of 565 

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks 566 

Global Cloud Classification System (PERSIANN-GCCS; Sorooshian et al., 2000), which does 567 

not use gage-based bias correction. The results in the top panel of Figure 5 show relatively good 568 

agreement between point-scale NOAA Atlas 14 IDFs and single-pixel RainyDay-based IDFs for 569 

bias-corrected TMPA and PERSIANN-GCCS, particularly considering the spatial sampling 570 

mismatch between the remote sensing data and Atlas 14 mentioned previously, while results 571 

based on CMORPH Corrected show systematic underestimation. 572 

 573 

The middle panel of Figure 5 shows how RainyDay can be used to examine the effect of rain 574 

gage-based bias correction on satellite-based IDF estimates. In the case of CMORPH, the Raw 575 

version overestimates rainfall intensity at all pe, while results for the Corrected version shows 576 

that the daily-scale bias correction scheme seems to overcompensate, leading to systematic 577 

underestimation. The TMPA-RT also overestimates at all pe, though not as severely as 578 

CMORPH Raw, while the monthly bias correction scheme used in the final version of TMPA 579 

appears to offer superior performance to the daily-scale routine used by CMORPH Corrected.  It 580 

is not immediately clear why this is the case, particularly since details of the bias correction 581 

procedure for CMORPH are not readily available, but relevant considerations include the effect 582 

of rainfall detection errors on bias correction (Tian et al., 2007) and the challenge of correcting 583 

for conditional biases at short time scales (Wright et al., 2014c).  The apparent strong 584 

performance of the monthly bias correction is encouraging in the context of Integrated Multi-585 

satellitE Retrievals for GPM (IMERG), a state-of-the-art rainfall dataset that combines various 586 

elements from TMPA, CMORPH, and PERSIANN, including TMPA’s monthly bias correction 587 

(Huffman et al., 2014). The IMERG dataset is not analyzed in this study since the full 588 

retrospective dataset is not yet available.  589 

 590 

The bottom panel of Figure 5 shows results similar to those in the top panel, but with A set to a 591 

0.5° by 0.5° (approximately 2500 km2) box centered on Iowa City. The results demonstrate that 592 

RainyDay can easily generate spatially aggregated rainfall IDF curves. This is not achievable 593 

using standard gage-based IDF curves without the use of ARFs, which, as previously mentioned, 594 
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have been shown to have limitations. We omit an area-averaged gage-based IDF curve from the 595 

bottom panel of Figure 5 for this reason. 596 

 597 

The results shown in Figure 5 (and also Figure 4) have implications for using RainyDay for IDF 598 

and hazard estimation in data-sparse regions using satellite remote sensing. First, there can be 599 

substantial differences in extreme rainfall estimates between satellite rainfall datasets, and these 600 

differences will propagate through to IDF estimates (and to probabilistic hazard estimates, as will 601 

be shown in Section 4.2). Furthermore, while comparison with gage-based IDFs (when 602 

available) can be used to understand these differences, spatial sampling mismatches complicate 603 

comparisons. Findings may not be transferable across regions since the performance of satellite 604 

rainfall retrievals vary with region and latitude (e.g. Ebert et al., 2007) and because the quality of 605 

the gage-based bias correction schemes that some of satellite datasets employ will vary 606 

regionally with the density of rain gage observations that are available. 607 
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 608 
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Figure 4: Comparison of IDF curves from Atlas 14 and RainyDay using the Stage IV and TMPA rainfall 609 
datasets for 3-, 6-, 12-, 24-, 48-, and 96-hour durations. Shaded areas for RainyDay estimates denote the 610 
ensemble spread. Bars on the NOAA Atlas 14 IDF estimates denote the 90% confidence intervals. Key 611 
RainyDay parameters: m=150 storms, A’=[40º to 44º N, 90 º to 96º W].=, A is a single rainfall pixel 612 
(approximately 16 km2 for Stage IV, 625 km2 for TMPA), N=100, Tmax=1000. Spatially-uniform transposition 613 
and Poisson-based temporal resampling are selected. Stage IV period of record is 2002-2014, TMPA period of 614 
record is 1998-2014. Analyses are restricted to April-November period. 615 

 616 
Figure 5: Comparison of IDF curves. Top: 24-hour duration IDF curves at the point scale from NOAA Atlas 617 
14 and at the pixel scale from RainyDay using TMPA Final, PERSIANN-GCCS, and CMORPH Corrected 618 
rainfall datasets. Middle: 24-hour duration IDF curves at the point scale from NOAA Atlas 14 and at the 619 
pixel scale from RainyDay using TMPA-RT, TMPA Final, CMORPH Raw, and CMORPH Corrected rainfall 620 
datasets. Bottom: 24-hour duration IDF curves at the 0.5° by 0.5° scale from RainyDay using TMPA, 621 
PERSIANN-GCCS, and CMORPH Corrected rainfall datasets. Shaded areas for RainyDay estimates denote 622 
ensemble spread. Bars on the NOAA Atlas 14 IDF estimates denote the 90% confidence intervals. Key 623 
RainyDay parameters: m=150 storms, A’=[40º to 44º N, 90 º to 96º W]. A is a single Stage IV rainfall pixel 624 
(approximately 625 km2 for TMPA, 64 km2 for CMORPH, 16 km2 for PERSIANN), N=100, Tmax=1000, t=24 625 
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hours . Spatially-uniform transposition and Poisson-based temporal resampling are selected. TMPA Final 626 
and CMORPH period of record is 1998-2014, TMPA RT period is 2000-2014, PERSIANN GCCS period of 627 
record is 2004-2014. Analyses are restricted to April-November period. 628 
 629 

4.2 Flood Frequency Analysis 630 

In this section, we present flood peak frequency analyses for the 4400 km2 Turkey River 631 

watershed in northeastern Iowa using rainfall scenarios from RainyDay as inputs to the Iowa 632 

Flood Center (IFC) Model, a calibration-free distributed hydrologic modeling framework 633 

designed primarily for multi-scale flood research and application (see Cunha et al., 2012; Demir 634 

and Krajewski, 2013; Mantilla and Gupta, 2005; Moser et al., 2015; Small et al., 2013). Moser et 635 

al. (2015) provides a detailed model description and Cunha et al. (2012) performed model 636 

validations for flood events in Iowa, showing that the performance of the IFC Model is generally 637 

comparable to that of the more heavily-calibrated operational NWS SAC-SMA flood forecast 638 

model (Burnash, 1995). The model configuration used here is the same that was used by Moser 639 

et al (2015). This study aims only to demonstrate basic features of RainyDay for flood hazard 640 

analysis and so does not provide detailed discussion of the IFC Model or comparisons with other 641 

available platforms. For a discussion of the value of calibration-free, distributed hydrologic 642 

models for multi-scale flood modeling, the reader is directed to Wright et al. (2014b) and, in 643 

particular, Cunha et al. (2012). The full multi-scale hazard estimation capabilities of SST and 644 

RainyDay can, in principle, be harnessed using any distributed hydrologic or mass wasting 645 

model, while some of the capabilities can be achieved through the use of lumped models.  646 

 647 

A limited set of model hydrograph validation is provided in Figure 6 for the 2008 and 2014 648 

April-July periods, during which major flooding occurred throughout Iowa (see Smith et al., 649 

2013 for a detailed examination of the hydrometeorology of the 2008 flood season). The model 650 

is run both with Stage IV and the final (gage-corrected) version of TMPA rainfall. Comparisons 651 

with U.S. Geological Survey (USGS) stream gage observations are provided at four locations, 652 

with upstream drainage areas ranging from 900 to 4000 km2. All hydrographs are normalized by 653 

the median annual flood (pe=0.5) to facilitate comparison across watershed scales. Median 654 

annual flood estimates are taken from the USGS StreamStats system 655 

(http://water.usgs.gov/osw/streamstats/). Model performance varies from event to event but there 656 

http://water.usgs.gov/osw/streamstats/
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is no clear evidence of systematic bias in the streamflow predictions as a function of event 657 

magnitude or drainage area. Predictions based on Stage IV are generally better than TMPA, and 658 

in fact several time periods show serious problems with the timing of TMPA-based simulations. 659 

In the 2008 flood season, TMPA incorrectly identifies the late April event as the largest for that 660 

year, rather than the early June floods. 661 

 662 
Figure 6: IFC model validation for 2008 and 2014 flood seasons (left and right panels, respectively) at four 663 
USGS stream gaging sites. Hydrographs are normalized by the median annual flood, which is indicated by 664 
dashed horizontal lines. 665 
 666 

We compare observed and simulated flood peaks for the 2008-2014 April-November period 667 

(Figure 7). All observed flood peaks that exceed 100 m3 s-1 are extracted from the four USGS 668 

stream gaging records. Then the corresponding flood peaks predicted by the IFC model are 669 

extracted from simulated hydrographs based on Stage IV and TMPA rainfall (left panel and right 670 

panels of Figure 7, respectively). To allow for modest errors in flood peak timing, a window of 671 

48 hours centered around the observed peak is used to identify the corresponding simulated 672 

peaks. All peaks in Figure 7 are normalized by the median annual flood for to facilitate 673 
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comparison across basin scales. As a rule of thumb, peaks below the median annual flood can be 674 

considered “within bank,” while peaks above the median annual flood can be considered “out-of-675 

bank,” meaning the flood magnitude is large enough to exceed the normal confines of the river 676 

channel and spill into the floodplain. The left panel of Figure 7 shows that, while there is modest 677 

scatter in the Stage IV-based flood peak simulations, there is no obvious systematic bias with 678 

watershed scale or event magnitude. The TMPA-based simulations in the right panel of Figure 7 679 

exhibit greater scatter, generally poor performance, and show some low bias across a range of 680 

event magnitudes. While not an exhaustive, the validation shown in Figures 6 and 7 suggests that 681 

streamflow prediction accuracy in the IFC model is driven primarily by the accuracy of the input 682 

rainfall rather than by model structure, consistent with Cunha et al. (2012), and that the limited 683 

accuracy of satellite rainfall inputs, even with gage-based bias correction, can translate into 684 

relatively poor model performance. 685 

 686 

 687 
Figure 7: Peak discharge validation for 2008-2014 April-November period at four USGS stream gaging 688 
stations. All events for which the USGS observations exceeded 100 m3 s-1 are shown, and peak discharges are 689 
normalized by the median annual flood. Simulated peaks using the IFC model with Stage IV (TMPA Final) 690 
rainfall inputs are compared with USGS observed peaks in the left (right) panel. Straight black lines indicate 691 
1:1 correspondence, while dashed lines indicate the envelope within which the modeled values are within 50% 692 
of observed. Grey boxes in the lower lefthand corners of each panel highlight all events less than the median 693 
annual flood. 694 
 695 
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We performed IFC model simulations using RainyDay rainfall scenarios developed from both 696 

the Stage IV and final gage-corrected TMPA rainfall datasets.  For each rainfall dataset, we ran 697 

ten ensemble members (i.e. N=10), each consisting of 500 rainfall scenarios (i.e. Tmax=500). At 698 

any point along the modeled river system, therefore, flood peak exceedance probabilities as low 699 

as 0.002 (500-year return period) could be directly derived from the IFC Model predictions. The 700 

Stage IV and TMPA-based storm catalogs for the Turkey River include 150 storms, drawn from 701 

the April-November rainfall record (2002-2014 for Stage IV, 1998-2014 for TMPA). A’ is an 702 

area covering most of Iowa, southwestern Wisconsin, and southeastern Minnesota in the United 703 

States. t = 96 hours for all simulations in this section.  704 

 705 

We initialize each simulation with a spatially uniform initial soil moisture value found to be 706 

typical for the region. Rainfall from a seasonally-based six-day “spin-up” period was then 707 

prepended to each 96-hour storm period as per Section 3.5, for a total rainfall input time period 708 

of ten days. Spatial variations in both soil moisture and river flow were therefore allowed to 709 

develop in each simulation prior to the arrival of the main storm. It should be noted that 710 

restricting the rainfall record to April-November, in addition to the lack of snowfall functionality 711 

in RainyDay and snowpack functionality in the IFC model, means that snowmelt-driven flooding 712 

is not considered in the analyses. In Iowa, snowmelt is generally a minor though non-negligible 713 

flood mechanism. We do not evaluate the accuracy of these spin-up soil moisture and river flow, 714 

and in fact such evaluation is relatively challenging due to the paucity of long-term soil moisture 715 

observation records that would be needed to correlate with river flow. As discussed in Section 716 

3.2, SST and RainyDay facilitates “decoupling” of discharge pe from rainfall pe. Though not 717 

demonstrated explicitly, this decoupling is reflected in the RainyDay-based frequency analyses 718 

in this section, in that the role of spun-up initial conditions and rainfall space-time structures can 719 

produce discharge pe that are different from the pe of the input rainfall scenarios. 720 

 721 

RainyDay-based frequency analysis results are shown for five subwatersheds of the Turkey 722 

River, ranging in drainage area from approximately 460 to 4000 km2 (Figure 8). Also included in 723 

Figure 8 are two types of frequency analyses derived from USGS stream gage observations and 724 

taken from Eash et al. (2013) and retrieved from the USGS StreamStats system. The first is 725 

developed using standardized methods described in Bulletin 17B (Interagency Advisory 726 
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Committee on Water Data, 1982) using the log-Pearson Type III distribution (henceforth referred 727 

to as the LP3 distribution) with a regionalized skew coefficient. The second is based on regional 728 

regression equations that consider drainage basin area and shape as well as some soil and 729 

geological properties. Eash et al. (2013) report 121 years of data for Turkey River at Garber, near 730 

Eldorado, and above French Hollow, while 63 years are reported for Volga River at Littleport 731 

and 45 years for Turkey River at Spillville. It should be noted that these record lengths refer to 732 

“historic record length” described in Section V.B.10 of Bulletin 17B and do not correspond to 733 

length of the USGS annual maxima streamflow timeseries available on the USGS National 734 

Water Information System (http://nwis.waterdata.usgs.gov/nwis), which are much shorter. All 735 

available USGS streamflow observations for the five sites are also shown, where pe is estimated 736 

using the Cunnane plotting position (Cunnane, 1978; pe
i
 = [i - 0.4] / [X + 0.2], where i is the rank 737 

of the observation and X is the number of observations). Other common plotting position 738 

formulae produce similar results (not shown) and do not alter the conclusions that follow. 739 

 740 

For all five locations shown in Figure 8, the SST-based peak discharge estimates using TMPA 741 

are higher than those using Stage IV for pe<0.01, generally converging toward the Stage IV 742 

estimates as pe decreases, and in some cases yielding lower estimates for pe less than about 0.005.  743 

This is consistent with the rainfall IDF results from RainyDay shown in Figure 4 and are 744 

suggestive of conditional biases in the TMPA dataset. This in indeed confirmed in Figure 9, 745 

which shows watershed-specific IDF curves for the entire Turkey River watershed from 746 

RainyDay using TMPA and Stage IV. The USGS streamflow observations shown in Figure 8 747 

agree reasonably well with the Stage IV-based estimates for pe>0.5, with the exception of the 748 

smallest subwatershed, Turkey River at Spillville, where Stage IV produces low peak estimates. 749 

For pe<0.5, there is a lack of consistency. For example, Turkey River at Garber shows higher 750 

estimates from Stage IV than the streamflow observations, while the reverse is true for Turkey 751 

River at French Hollow and near Eldorado. Deviations from the USGS observations do not show 752 

a systematic scale dependency. 753 

 754 

Both RainyDay-based frequency analyses and the USGS streamflow observations are generally 755 

higher than the USGS frequency analyses for pe less than about 0.2. One exception is the set of 756 

USGS observations for Turkey River at Spillville, which are lower than both the RainyDay 757 

http://nwis.waterdata.usgs.gov/nwis
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estimates and the regional regression but generally consistent with the Bulletin 17B analysis. The 758 

regional regression results for Turkey River at Spillville are greater than the USGS regionalized 759 

LP3 estimates, while the reverse is true for the four larger subwatersheds. Interestingly, some of 760 

the USGS observations fall outside of the 90% confidence intervals of the LP3 analyses for 761 

Turkey River near Eldorado, Volga River at Littleport, and Turkey River at Garber. In the case 762 

of the latter station, the five most intense floods are near or above the upper 95% confidence 763 

bound, a finding that is explored in more detail in the following paragraphs.  764 

 765 

It should be noted that with the exception of Turkey River at Garber, the differences between the 766 

RainyDay-based analyses are roughly similar in magnitude to the differences between the two 767 

different USGS approaches. This fact, along with the underestimation shown by USGS 768 

frequency analyses relative to the USGS peak discharge observations at several sites, suggests 769 

that the RainyDay-based frequency analyses should not be dismissed out of hand as being too 770 

high for low pe. In fact, as the next example shows, there is observational evidence that supports 771 

the validity of the RainyDay-based results in light of possible nonstationarity in flooding. It 772 

should be noted that discharge-based frequency analyses, even in stationary situations with long 773 

records, are not necessarily superior to hydrologic modeling methods. Analyses by Smith et al. 774 

(2013) suggest that peak discharge measurement errors may be substantial for a recent major 775 

flood events in Iowa.  The propagation of discharge measurement errors through frequency 776 

analysis is poorly understood (e.g., Petersen-Øverleir and Reitan, 2009; Petersen-Øverleir, 2004; 777 

Potter and Walker, 1985). Rogger et al. (2012) reported significant differences between two 778 

commonly-used flood frequency analysis approaches for ten small alpine watersheds in Austria, 779 

one based on a stream gage-based statistical method and the other on design storm methods 780 

combined with a hydrologic model. The latter method produced higher discharge values than the 781 

former, and the authors discuss possible explanations and deficiencies in both approaches while 782 

concluding that in at least some situations, hydrologic modeling using rainfall inputs will 783 

produce superior results. 784 

 785 

Of the five USGS stream gage locations shown in Figure 8, only the gage at Garber, Iowa has a 786 

long (82-year), unbroken annual peak discharge record. We use this record to better understand 787 

the discrepancies between the RainyDay-based results and the USGS frequency analyses from 788 
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Eash et al. (2013), and in particular to contrast the methods in the context of potential 789 

nonstationarity in flood processes. The top panel of Figure 10 shows that the same RainyDay and 790 

USGS frequency analyses shown in Figure 8 for Turkey River at Garber. In this case, however, 791 

the USGS observations have been divided into two groups; one for all peaks occurring from 792 

1933 to 1989, and the second for all peaks occurring from 1990 to 2014. The plotting position-793 

based pe is recalculated for each group of observations. The 1933-1989 subgroup shows higher 794 

discharges than either RainyDay Stage IV or USGS discharges for pe>0.5, and lower discharges 795 

for pe less then about 0.2. The 1990-2014 subgroup, meanwhile, matches closely with the 796 

RainyDay-based frequency analyses with Stage IV.  797 

 798 
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 799 



 34 

Figure 8:  Peak discharge analyses using RainyDay with Stage IV and TMPA rainfall remote sensing data 800 
and the IFC Model, compared against USGS stream gage-based analyses for five subwatersheds of the 801 
Turkey River in northeastern Iowa. Shaded areas for RainyDay estimates denote the ensemble spread. Bars 802 
on the USGS Bulletin 17B estimates denote the 90% confidence intervals. Confidence intervals are not 803 
available for the USGS regional regression. Key RainyDay parameters: m=150 storms, A’=[40º to 44º N, 90 º 804 
to 96º W], A is the watershed upstream of the USGS streamgage at Garber, IA, N=10, Tmax=500, t=96 hours. 805 
Spatially-uniform transposition and Poisson-based temporal resampling are selected. Stage IV period of 806 
record is 2002-2014, TMPA period of record is 1998-2014. RainyDay Analyses are restricted to April-807 
November period. 808 
 809 
Taken together, this suggests a regime shift toward more extreme flooding since 1990 and a 810 

reduction in the magnitude of more average floods. Evidence of this regime shift can be seen in 811 

the annual peak time series in the bottom panel of Figure 10. We fit a nonparametric linear 812 

regression to the 1933-2014 time series using the nonparametric Theil-Sen estimator (Sen, 1968) 813 

and a statistically significant (p-value<0.05) downward trend was found. In contrast, using 814 

ordinary least squares, an insignificant upward trend is found over the same period. Thus when 815 

the influence of the most extreme values is minimized through nonparametric statistical methods, 816 

there is a tendency toward smaller flood peaks over time that is not evident with parametric 817 

methods, which are more sensitive to the recent extremes. 818 

 819 

The top panel of Figure 10 shows that the period of apparent elevated flood activity is well 820 

captured by RainyDay, while the preceding period is not, presumably because the IFC model 821 

reflects recent land use changes and because the input rainfall data are relatively recent.   In 822 

general, whether or not this constitutes a strength or limitation of RainyDay depends on the 823 

underlying causation of nonstationary flood activity.  If flood nonstationarity results from a 824 

climate-driven secular trend in extreme rainfall, then the results from RainyDay using relatively 825 

short and recent rainfall remote sensing records should be understood as more “up-to-date” 826 

estimates of flood frequency compared to approaches, such as the USGS analyses, that use 827 

longer stream gage or rain gage records. The same is true if there is a secular trend in flooding 828 

due to urbanization or other land-use changes, so long as these changes are properly incorporated 829 

into the hydrologic model. In the case of Iowa, flooding has been shown to be affected by land-830 

use change (Villarini and Strong, 2014) and by climate change (Mallakpour and Villarini, 2015). 831 

If, on the other hand, flood or rainfall nonstationarity has a periodic structure due to a slowly-832 
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varying climate mode, then the results from SST may only adequately reflect the true flood 833 

frequency for the phase of the mode that overlaps with the remote sensing record. It should also 834 

be recognized that a period of higher or lower flood activity at a particular location could result 835 

from pure randomness (i.e. in absence of both secular and periodic trends).  SST should be 836 

relatively robust to this possibility through the sampling storms from a larger region.  837 

 838 

 839 
Figure 9:  IDF analyses for Turkey River using RainyDay with Stage IV and TMPA rainfall remote sensing 840 
data. Shaded areas for RainyDay estimates denote the ensemble spread. Key RainyDay parameters: m=150 841 
storms, A’ = [40º to 44º N, 90 º to 96º W], A is the 4400 km2 watershed upstream of the confluence with the 842 
Mississippi River. N=100, Tmax=500, t=96 hours, and spatially-uniform transposition and Poisson-based 843 
temporal resampling are selected. Stage IV period of record is 2002-2014, TMPA period of record is 1998-844 
2014. Analyses are restricted to April-November period. 845 
 846 
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 847 
Figure 10:  Top panel—four peak discharge analyses for the location of the USGS stream gage at Garber, IA: 848 
RainyDay with Stage IV and TMPA rainfall and USGS frequency analyses using regional regression 849 
relationships and Bulletin 17B methods. Shaded areas for RainyDay estimates denote the ensemble spread. 850 
Bars for the Bulletin 17B-based analysis denote the 90% confidence intervals. Confidence intervals are not 851 
available for the USGS regional regression. Bottom panel—annual peak discharge time series for 1932-2014 852 
for the Garber gage. Linear trend lines in the bottom panel use non-parametric Thiel-Sen regression (Sen, 853 
1968) and ordinary least squares (OLS). Key RainyDay parameters: m=150 storms, A’ = [40º to 44º N, 90 º to 854 
96º W], A is the watershed upstream of the USGS streamgage at Garber, IA, N=10, Tmax=500, t=96 hours. 855 
Spatially-uniform transposition and Poisson-based temporal resampling are selected. Stage IV period of 856 
record is 2002-2014, TMPA period of record is 1998-2014. RainyDay Analyses are restricted to April-857 
November period. 858 
 859 

 860 
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4.3 SST Sensitivity to Record Length and User-defined Parameters 861 

In this section, we examine the sensitivity of SST to the length of the input dataset and to 862 

different user-defined parameters and options introduced in Sections 2 and 3. Specific topics that 863 

are examined include the optional non-uniform spatial transposition (Section 3.3), empirically-864 

based temporal resampling (Section 3.4) and the size of the transposition domain A’. In all cases, 865 

it should be kept in mind that the specific results pertain to the Iowa study area and may not be 866 

generalizable to other locations. The intention is to demonstrate some important concepts and 867 

pitfalls associated with RainyDay, and provide a possible framework for assessing performance 868 

in different locations and applications. 869 

 870 

The core concept behind SST is “space-for-time substitution,” in which storms over a larger 871 

region help to inform estimates of rare rainfall in a particular subregion. A common critique of 872 

coupling SST with rainfall remote sensing datasets is that such data records are relatively short 873 

(approximately 10 to 20 years at time of writing) and thus may not contain sufficient numbers of 874 

extreme events at the regional scale to leverage this substitution property and accurately recreate 875 

the properties of rare rainfall events. To examine this critique, we turn to a longer dataset: CPC-876 

Unified, a daily rain gage-based gridded rainfall dataset that has a spatial resolution of 0.25° over 877 

the conterminous United States (Chen et al., 2008; Xie et al., 2007). Though the spatial and 878 

temporal resolution of CPC-Unified is generally insufficient for fine-scale flood modeling, its 879 

long record—1948 to present—makes it ideal for evaluating the sensitivity of SST-based IDF 880 

estimates to record lengthWe examined several stationarity measures over the transposition 881 

domain A’ (which, as in Section 4.1, roughly encompasses the state of Iowa), including the 882 

average number of storm counts per year and the mean, median, and standard deviation of storm 883 

rainfall depth (results not shown). None of these measures revealed significant temporal trends, 884 

generally consistent with Villarini et al. (2011). This may contradict the apparent flood 885 

nonstationarity in the Turkey River watershed discussed in Section 4.2, or may point to land-use 886 

change as the predominant source of non-stationarity in Turkey River, but rigorous examination 887 

is beyond the scope of this paper. 888 

 889 

We use a bootstrapping approach to examine variability in IDF estimates derived from the CPC-890 

Unified data using RainyDay and how this variability evolves as the length of the record 891 
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increases. All IDF estimates in this section are for 1-day rainfall over averaged over a 0.5° by 892 

0.5° box. We generate n-year long input rainfall datasets by randomly selecting n years of CPC-893 

Unified data without replacement from the 1948-2014 period. Each of these datasets is then used 894 

as the basis for a single run of RainyDay with 100 ensemble members and with m = 10n (leading 895 

to λ=10 storms per year). We repeat this procedure to create 25 datasets for each value of n = 10, 896 

20, 30, 40, 50 years.  897 

 898 
Figure 11: The effect of the rainfall record length on daily rainfall IDF curves estimated using RainyDay with 899 
the CPC-Unified daily rainfall over Iowa, United States. Each panel shows the ensemble mean (solid lines) for 900 
ten independent runs of RainyDay. The shaded areas denote the maximum spread across the ten runs. Key 901 
RainyDay parameters: m=10n storms (where n varies by specified record length), A’=[40º to 44º N, 90 º to 96º 902 
W], A is a 0.5° by 0.5° box, N=100, Tmax=1000, t=1 day, spatially-uniform transposition and Poisson-based 903 
temporal resampling. Analyses are restricted to April-November period. 904 
 905 

Substantially more variability is evident in the ensemble mean and spread of the IDF estimates 906 

using 10 years of CPC-Unified data than using 20 years, while change in variability is negligible 907 



 39 

between runs using 20 years and 30 years of data (Figure 11). We also examined the variability 908 

of relative deviations in the ensemble IDF means, minima, and maxima from RainyDay between 909 

the n-year runs and IDFs based on the full 67-year dataset (Figure 12). The boxplots show that 910 

the majority of the deviations in the n-year IDF ensemble means, minima, and maxima are less 911 

than 10% and that the vast majority are less than 20% for any given pe. For most pe, there are 912 

substantial reductions in deviation when the records increase in length from n = 10 to n = 20 913 

years. The reductions in deviation are less when the record length increases beyond 20 years.  914 

 915 
Figure 12: The effect of rainfall record length on variability in daily rainfall IDF estimated using RainyDay 916 
with CPC-Unified data over Iowa, United States for 0.1, 0.05, 0.01, 0.005, and 0.001 exceedance probabilities. 917 
Each boxplot shows the variability of a particular rainfall quantity at a given exceedance probability across 918 
25 independent runs of RainyDay. Specific rainfall quantities shown are the ensemble mean (top panel), 919 
ensemble maximum (middle panel), and ensemble minimum (bottom panel). Boxes denote the lower and 920 
upper quartiles and whiskers indicate the extent of the +/-1.5 interquartile range. Key RainyDay parameters: 921 
m=10n storms (where n varies by specified record length), A’=[40º to 44º N, 90 º to 96º W], A is a 0.5° by 0.5° 922 
box, N=100, Tmax=1000, t=1 day, spatially-uniform transposition and Poisson-based temporal resampling. 923 
Analyses are restricted to April-November period. 924 
 925 
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Unless the intensity of the rainfall inputs is perturbed stochastically, SST-based frequency 926 

analyses  have an inherent upper bound. This upper bound corresponds to the most intense 927 

rainstorm in the storm catalog transposed in such a way that rainfall over A is maximized. The 928 

lack of positive deviations in the ensemble maxima at pe = 10-3 (middle panel of Figure 12; also 929 

in certain realizations shown in Figure 11) show where the SST procedure “encounters” this 930 

upper limit.  931 

 932 

While the results in this section are by no means exhaustive and the conclusions are specific to 933 

the Iowa study region and could vary in different physiographic regions, they nonetheless 934 

suggest that concerns over the use of relatively short remote sensing records with SST may be 935 

overstated and that remote sensing datasets, many of which are approaching 20 years in length, 936 

should provide relatively robust estimates that will improve as these datasets continue to grow in 937 

length.  This emphasizes the fact that rainfall events that would be considered rare from the 938 

perspective of a single location or watershed can occur relatively frequently from a regional 939 

perspective. This is qualitatively consistent with the findings of Troutman and Karlinger (2003), 940 

who estimate that a flood with pe >10-2 occurs on average every 4.5 years at at least one of the 941 

193 USGS stream gage sites in their Puget Sound study region. 942 

 943 

A potentially important issue related to short data records in SST, previously mentioned in 944 

Section 3.3,  can arise if, instead of assuming that the probability of storm occurrence is uniform 945 

across the transposition domain, non-uniform spatial transposition is used instead (such as the 946 

approach used in Wilson and Foufoula-Georgiou, 1990 or the optional scheme in RainyDay 947 

described in Section 3.3). Using the bootstrapping approach with the CPC-Unified dataset 948 

described above, visual inspection of storm probability-of-occurrence maps such as the one 949 

shown in Figure 3 reveal that there can be substantial variations in the spatial distribution of 950 

historical storms when rainfall records are short (results not shown). These variations tend to 951 

diminish as the length of record increases, as do their impacts on IDF estimates. More variation 952 

is evident in the median IDFs from ten independent runs of RainyDay, for example, using non-953 

uniform transposition than using uniform transposition when n=10 years (Figure 13, left panels). 954 

When using non-uniform transposition, variability diminishes when n=20 years and a systematic 955 

increase in rainfall intensity for pe >0.02, relative to the uniform transposition case, emerges 956 
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(Figure 13, right panels). Given these results, we recommend that the assumption of uniform 957 

transposition be used in the absence of strong physically-based reasoning and observational 958 

support for non-uniform transposition. It is possible, however, that this explains the IDF 959 

underestimation by RainyDay with Stage IV for high pe relative to Atlas 14  shown in Figure 4, 960 

where uniform spatial transposition was used.  961 

 962 
Figure 13: The effect of the spatial transposition scheme on daily  rainfall IDF curves estimated using 963 
RainyDay with the CPC-Unified daily rainfall over Iowa, United States. Each panel shows the ensemble mean 964 
(solid lines) for ten independent runs of RainyDay. The shaded areas denote the maximum spread across the 965 
ten runs. The specific years that comprise the input dataset vary. Key RainyDay parameters: m=10n storms 966 
(where n varies by specified record length), A’=[40º to 44º N, 90 º to 96º W], A is a 0.5° by 0.5° box, N=100, 967 
Tmax=1000, t=1 day. Poisson-based temporal resampling is used. Analyses are restricted to April-November 968 
period. 969 
 970 

As mentioned previously, RainyDay supports either the Poisson-based resampling that has 971 

traditionally been used with SST, or an empirical scheme described in Section 3.4. There do not 972 

appear to be substantial systematic differences between the results from RainyDay using these 973 

two schemes with 10-year records (Figure 14, left panels), but, similar to Figure 13, when 20-974 

year records are used, there is a tendency toward higher rainfall estimates for pe >0.02. Results 975 
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may differ in other regions, particularly where temporal clustering of storms is very strong or 976 

where rainstorms are very infrequent. It is recommended that the modeler assess clustering using 977 

an independent long-term rainfall data source if available, in addition to assessing sensitivity to 978 

this option in RainyDay. As with the spatial transposition schemes, the choice of temporal 979 

resampling scheme does not appear to have a substantial impact on low pe estimates. 980 

 981 

 982 
Figure 14: The effect of the temporal resampling scheme on daily rainfall IDF curves estimated using 983 
RainyDay with the CPC-Unified daily rainfall over Iowa, United States. Each panel shows the ensemble mean 984 
(solid lines) for ten independent runs of RainyDay. The shaded areas denote the maximum spread across the 985 
ten runs. The specific years that comprise the input dataset vary. Key RainyDay parameters: m=10n storms 986 
(where n varies by specified record length), A’=[40º to 44º N, 90 º to 96º W], A is a 0.5° by 0.5° box, N=100, 987 
Tmax=1000, t=1 day. Spatially uniform transposition is used. Analyses are restricted to April-November 988 
period. 989 
 990 

We also examine the sensitivity of RainyDay results to the size of A’ (Figure 15). To do so, we 991 

run RainyDay for various square domains ranging from 1° by 1° up to 10° by 10°, while holding 992 

A fixed at a 0.5° by 0.5° box. Then the evolution of rainfall intensity is examined for a range of 993 

pe as a function of A’. This is repeated for a several different record lengths and for two values of 994 
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λ. Interestingly, while there is a general tendency for intensity estimates to stabilize as A’ grows, 995 

the behavior is not asymptotic (though roughly so for n=68 years). The high exceedance 996 

probability estimates (pe=0.5) tend to be stable over a large range of A’ and then descrease for 997 

very large values, due to the tendency for synthetic years to be created in which no storm is 998 

transposed directly over A. This is the root of potential low biases mentioned in Step 2 of the 999 

SST procedure described in Section 2. However, Figure 15 demonstrates that this tendency for a 1000 

decrease in intensity estimates for large A’ extends to smaller pe values as well, and that there is a 1001 

critical value of A’ at which the estimated intensity is roughly maximized. This critical value 1002 

appears to vary more by the particular period of record than by the length of record. For 1003 

example, the 20-year record from 1976-1995 yielded a critical value of A’ that is lower than the 1004 

critical value from 20-year record from 1996-2015. This points to the fact that the existence and 1005 

number of major storms within A’ during the record period is very important (Wright et al., 1006 

2014b reached the same conclusion through different means).  1007 

 1008 

These results also indicate that increasing m (thus increasing λ) can mitigate the reduction in 1009 

estimated intensity for values of A’ larger than the critical value. This result suggests that, if the 1010 

modeler is interested in hazard estimation across a range of pe, he or she should choose a 1011 

relatively large m. A diagnostic framework within the RainyDay software to identify this critical 1012 

value of A’ for a given value of m (or vice versa) for different pe would be useful but does not 1013 

currently exist. 1014 
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Figure 15: The effect of the size of the transposition domain A’ on daily rainfall IDF curves estimated using 1016 
RainyDay with the CPC-Unified daily rainfall over Iowa, United States using a range of record lengths. Key 1017 
RainyDay parameters: m=10n storms (where n varies by specified record length), A’ is a square of varying 1018 
size, A is a 0.5° by 0.5° box, N=100, Tmax=1000, t=1 day, spatially-uniform transposition and Poisson-based 1019 
temporal resampling. Analyses are restricted to April-November period. 1020 

5. Discussion and Conclusions 1021 

In this paper we introduce RainyDay, a Python-based platform that couples rainfall remote 1022 

sensing data with a technique known as Stochastic Storm Transposition (SST) that effectively 1023 

“lengthens” the extreme rainfall record through temporal resampling and spatial transposition of 1024 

observed rainstorms. It produces probabilistic extreme rainfall scenarios that include realistic 1025 

estimates of rainfall duration, intensity, and space-time structure that can be used for 1026 

probabilistic flood and landslide hazard and risk assessment at a wide range of scales. 1027 

 1028 

The SST technique, as implemented in RainyDay, has two important features that distinguish it 1029 

from IDF and design storm methods for describing the relationships between the intensity, 1030 

duration, and structure of extreme rainfall. First, it leverages the detailed picture of rainfall 1031 

space-time structure offered by ground-based radar or satellite-based sensors.  This structure can 1032 

play an important role in landslides and floods because the variability in the concentration and 1033 

intermittency of extreme rainfall in space and time can lead to a complex and diverse spectrum 1034 

of hazard response.  This structure is difficult to measure using rain gages due to the high gage 1035 

densities and sampling rates required, and so rain gage-based methods for analysis of rainfall-1036 

driven hazards, such as IDF relations and design storm methods, typically neglect this higher-1037 

order variability. The reader is directed to Wright et al. (2014b) for a deeper examination of this 1038 

feature in the context of urban flood hazards. 1039 

 1040 

The second important feature of RainyDay is that, because of the near-global coverage of 1041 

satellite rainfall datasets, it is possible to generate realistic representations of extreme rainfall in 1042 

remote or poorly-instrumented regions where rain gage or stream gage records are lacking. Such 1043 

regions are common even in wealthy nations and are ubiquitous in developing countries, many of 1044 

which are characterized by rapidly-growing exposure to rainfall-driven hazards due to 1045 

urbanization and climate change. The authors are not aware of other approaches that offer the 1046 
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ability to generate realistic rainfall inputs for probabilistic hazard modeling nearly anywhere on 1047 

the globe with minimal computational effort.  1048 

 1049 

Despite the advantages that SST and RainyDay offer over some other methods for assessing 1050 

rainfall-driven hazards (e.g. design storms, discharge frequency analysis), a number of 1051 

limitations and unanswered questions remain. Perhaps the biggest limitation to coupling SST 1052 

with rainfall remote sensing, and to remote sensing applications more broadly, is the uncertain 1053 

accuracy of the input rainfall data. Significant efforts have been made to better understand and 1054 

minimize the errors in remote sensing estimates of rainfall, both from satellites (e.g. Petty and 1055 

Krajewksi, 1996; Tian and Peters-Lidard, 2007; Tian et al., 2009) and from ground-based radar 1056 

(e.g. Villarini and Krajewski, 2010). Such studies demonstrate that remote sensing estimates can 1057 

vary significantly from reference observations in terms of rainfall intensity bias and 1058 

differentiation between rainy and non-rainy areas, with important implications for hazard 1059 

applications. In the case of satellite-based rainfall estimates, heterogeneities in the underlying 1060 

land or water surfaces can be difficult to distinguish from variations in cloud and rainfall 1061 

properties (e.g. Ferraro et al., 2013), while both ground-based radar and space-based sensors tend 1062 

to suffer in mountainous areas due to dramatic variations in rainfall physical properties over 1063 

short time and length scales. Furthermore, the spatial and temporal resolution of remote sensing 1064 

estimates, particularly from satellites, can be too coarse for modeling at very small scales, 1065 

especially in urban areas and fast-responding mountain or desert catchments where surface 1066 

runoff generation from intense, short-duration rainfall on sub-hourly, sub-kilometer scales can be 1067 

a key driver of hazards. The uncertainties associated with rainfall remote sensing data pose 1068 

serious challenges for flood or landslide forecasting and monitoring, which require accurate 1069 

rainfall estimates in real-time. These issues may be somewhat less critical in the SST framework 1070 

or in long-term hazard assessment more generally, since the rainfall estimates need only have 1071 

fidelity in the statistical sense. SST will be somewhat robust to random errors in rainfall data, as 1072 

the underestimation of rainfall intensity from some storms in the storm catalog can be 1073 

compensated by overestimation of rainfall intensity from others. In contrast, SST is not robust to 1074 

systematic rainfall biases, as demonstrated in several examples in this paper. IMERG, NASA’s 1075 

newest satellite multi-sensor dataset, will feature improved accuracy and relatively high 1076 
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resolution (0.1º, 30-minute), addressing some of these issues once the full retrospective dataset 1077 

from 1998-present becomes available. 1078 

 1079 

In the case of flood hazard modeling using SST, a practical upper limit on the size of the area of 1080 

interest A can arise. As mentioned in Sections 2.1 and 3.3, the sizes of A and A’ can be limited 1081 

due to the challenges posed by transposition in the presence of complex terrain features.  1082 

Furthermore, as A becomes larger, the rainfall duration t needed to properly model hazard 1083 

response becomes longer. While RainyDay does not restrict the choice of t, practical limitations 1084 

exist. In large watersheds, floods are usually the result of specific space-time arrangements of 1085 

multiple distinct storm systems over the span of perhaps a week and up to months, often linked 1086 

to persistent large-scale atmospheric disturbances. One could specify a long t (a month, for 1087 

example) in RainyDay to “capture” all of these storm systems within a single storm catalog 1088 

entry. Such long t, however, means there could only be relatively few entries in the storm 1089 

catalog, given the limited record length of the input dataset. Such an approach would be 1090 

constrained by the few space-time configurations of these storm systems that were actually 1091 

observed, while other non-observed configurations are hypothetically possible.  A tradeoff thus 1092 

emerges as A (and thus t) increase relative to the area of the transposition domain A’.  If A is a 1093 

large fraction of A’, then there is little opportunity to leverage the “space-for-time” substitution 1094 

that is at the core of the SST approach. If the user instead decides to increase the size of A’, he or 1095 

she must ensure that this transposition is performed in a realistic manner. This effectively 1096 

precludes modeling of regions that approach continental scales. The maximum scale at which 1097 

SST can be feasibly used is an open question with no simple answer. It should be noted that IDF 1098 

and design storm methods face similar and perhaps even more acute limitations in terms of an 1099 

upper area limit, though for different reasons (e.g. conceptual and practical shortcomings of 1100 

point-based temporal rainfall distributions and area reduction factors).  1101 

 1102 

As mentioned in Section 4.3, a common critique of the methodology presented in this study is 1103 

that the relatively short remote sensing records may not contain enough truly extreme rainfall 1104 

events. Sensitivity to record length is not unique to SST; frequency estimates of rare hazards will 1105 

be driven by the largest several events in the historical record, regardless of the chosen analysis 1106 

technique. The results in Section 4.3 demonstrate that this concern may be somewhat 1107 
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exaggerated in the case of SST since very extreme rainfall events that are considered rare from a 1108 

local viewpoint can occur much more frequently when viewed regionally. Like more commonly-1109 

used regionalization techniques, SST helps to leverage this fact to improve hazard analysis. As 1110 

the rainfall remote sensing record grows, the robustness of estimates produced by SST and 1111 

RainyDay should increase as additional extreme storms are observed (and as their accuracy 1112 

improves due to technological advances). Estimates of rainfall intensity will improve more per 1113 

unit of time using SST than using point-based techniques due to SST’s regional nature, while 1114 

new patterns of rainfall space-time structure will add to the realism of SST-based flood and 1115 

landslide hazard estimates since a broader spectrum of hazard outcomes will be possible. 1116 

RainyDay makes such updating simple, while IDF databases and design storm methods are 1117 

generally updated through slow and costly procedures (Y. Zhang, personal communication, May 1118 

14, 2015). 1119 

 1120 

As highlighted in Section 4.2, SST and RainyDay have important features in the context of 1121 

nonstationary hazards. Extreme rainfall scenarios from RainyDay are generally based on more 1122 

recent observations than existing rain gage or stream gage-based frequency analyses such as 1123 

Atlas 14 IDF relations, which contain older records that may not be representative of the current 1124 

state of the climate. In this respect, hazard analysis based on RainyDay can be understood as a 1125 

relatively current “snapshot” based on recent climate. The performance of RainyDay is very 1126 

dependent on major storms having occurred one or more times within the transposition domain, 1127 

however, meaning that spatial transposition is not a perfect remedy for short data records. 1128 

Furthermore, if the rainfall remote sensing record deviates significantly from the true long-term 1129 

properties of extreme rainfall over the region of interest due to random chance, decadal-scale 1130 

climate variability, or systematic measurement bias, then caution must be taken when using 1131 

RainyDay. It can be challenging in practice to diagnose such nonstationarities and biases due to a 1132 

lack of long-term independent observational data, particularly in remote or underdeveloped 1133 

regions.  Meanwhile, as discussed in Wright et al. (2014b), combining SST (or other rainfall-1134 

based approaches, e.g. Cunha et al., 2011) with a distributed hazard model allows the analyst to 1135 

incorporate changes in land use and land cover into hazard estimates.   1136 
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Acknowledgments 1138 



 49 

This work was made possible through the fellowship support of the NASA Postdoctoral 1139 

Program, administered by Oak Ridge Associated Universities, Oak Ridge, Tennessee. We also 1140 

acknowledge the support of the University of Wisconsin and the Iowa Flood Center and the 1141 

University of Iowa. We would like to acknowledge the help of Soni Yatheendradas and Dalia 1142 

Kirschbaum of NASA Goddard Space Flight Center for provision of the PUSH rainfall error 1143 

modeling code, which ultimately was not included as part of this manuscript nor in the current 1144 

version of RainyDay, but which helped to illuminate the challenges of incorporating stochastic 1145 

rainfall error models into the SST framework. We would also like to thank Scott Small, Chi Chi 1146 

Choi, and Tibebu Ayalew at the University of Iowa for their support in configuring and 1147 

troubleshooting the IFC Model. Computing resources supporting the hydrologic modeling were 1148 

provided by the NASA High-End Computing Program through the NASA Center for Climate 1149 

Simulation at Goddard Space Flight Center. We would also like to thank the editor and the two 1150 

anonymous reviewers whose constructive criticisms contributed greatly to the study. 1151 

 1152 

References 1153 

Alexander, G.N., 1963. Using the probability of storm transposition for estimating the frequency 1154 

of rare floods. J. Hydrol. 1, 46–57. 1155 

Bonnin, G.M., Martin, D., Lin, B., Parzybok, T., Riley, D., 2004. NOAA Atlas 14: Precipitation-1156 

Frequency Atlas of the United States. 1157 

Brenning, A., 2005. Spatial prediction models for landslide hazards: review, comparison and 1158 

evaluation. Nat. Hazards Earth Syst. Sci. 5, 853–862. 1159 

Burnash, R.J.C., 1995. The NWS river forecast system: Catchment modeling. Comput. Model. 1160 

Watershed Hydrol. 311–366. 1161 

Chen, M., Shi, W., Xie, P., Silva, V.B.S., Kousky, V.E., Wayne Higgins, R., Janowiak, J.E., 1162 

2008. Assessing objective techniques for gauge-based analyses of global daily precipitation. 1163 

J. Geophys. Res. Atmos. 113, n/a–n/a. 1164 

Cheng, L., AghaKouchak, A., 2014. Nonstationary precipitation Intensity-Duration-Frequency 1165 

curves for infrastructure design in a changing climate. Sci. Rep. 4, 7093. 1166 

Ciach, G.J., Morrissey, M.L., Krajewski, W.F., 2000. Conditional Bias in Radar Rainfall 1167 



 50 

Estimation. J. Appl. Meteor. 39, 1941–1946. 1168 

Crum, T.D., Alberty, R.L., 1993. The WSR-88D and the WSR-88D Operational Support 1169 

Facility. Bull. Am. Meteorol. Soc. 74, 1669–1687. 1170 

Cunha, L.K., Krajewski, W.F., Mantilla, R., Cunha, L., 2011. A framework for flood risk 1171 

assessment under nonstationary conditions or in the absence of historical data. J. Flood Risk 1172 

Manag. 4, 3–22. 1173 

Cunha, L.K., Mandapaka, P. V, Krajewski, W.F., Mantilla, R., Bradley, A.A., 2012. Impact of 1174 

radar-rainfall error structure on estimated flood magnitude across scales: An investigation 1175 

based on a parsimonious distributed hydrological model. Water Resour. Res. 48. 1176 

Cunnane, C., 1978. Unbiased plotting positions — A review. J. Hydrol. 37, 205–222. 1177 

Demir, I., Krajewski, W.F., 2013. Towards an integrated Flood Information System: Centralized 1178 

data access, analysis, and visualization. Environ. Model. Softw. 50, 77–84. 1179 

Eash, D.A., Barnes, K.K., Veilleux, A.G., 2013. Methods for estimating annual exceedance-1180 

probability discharges for streams in Iowa, based on data through water year 2010: U.S. 1181 

Geological Survey Scientific Investigations Report 2013-5086. 1182 

Ebert, E.E., Janowiak, J.E., Kidd, C., 2007. Comparison of near-real-time precipitation estimates 1183 

from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 88, 47–64. 1184 

England, J.F., Julien, P.Y., Velleux, M.L., 2014. Physically-based extreme flood frequency with 1185 

stochastic storm transposition and paleoflood data on large watersheds. J. Hydrol. 510, 228–1186 

245. 1187 

Ferraro, R.R., Peters-Lidard, C.D., Hernandez, C., Turk, F.J., Aires, F., Prigent, C., Lin, X., 1188 

Boukabara, S.-A., Furuzawa, F.A., Gopalan, K., Harrison, K.W., Karbou, F., Li, L., Liu, C., 1189 

Masunaga, H., Moy, L., Ringerud, S., Skofronick-Jackson, G.M., Tian, Y., Wang, N.-Y., 1190 

2013. An Evaluation of Microwave Land Surface Emissivities Over the Continental United 1191 

States to Benefit GPM-Era Precipitation Algorithms. IEEE Trans. Geosci. Remote Sens. 51, 1192 

378–398. 1193 

Fontaine, T.A., Potter, K.W., 1989. Estimating Probabilities of Extreme Rainfalls. J. Hydraul. 1194 

Eng. 115, 1562–1575. 1195 



 51 

Foufoula-Georgiou, E., 1989. A probabilistic storm transposition approach for estimating 1196 

exceedance probabilities of extreme precipitation depths. Water Resour. Res. 25, 799–815. 1197 

Franchini, M., Helmlinger, K.R., Foufoula-Georgiou, E., Todini, E., 1996. Stochastic storm 1198 

transposition coupled with rainfall-runoff modeling for estimation of exceedance 1199 

probabilities of design floods. J. Hydrol. 175, 511–532. 1200 

Gupta, V.K., 1972. Transposition of Storms for Estimating Flood Probability Distributions. 1201 

Colorado State University. 1202 

Habib, E., Henschke, A., Adler, R.F., 2009. Evaluation of TMPA satellite-based research and 1203 

real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, 1204 

USA. Atmos. Res. 94, 373–388. 1205 

Horritt, M.S., Bates, P.D., 2002. Evaluation of 1D and 2D numerical models for predicting river 1206 

flood inundation. J. Hydrol. 268, 87–99. 1207 

Huffman, G.J., Adler, R.F., Bolvin, D.T., Nelkin, E.J., 2010. The TRMM Multi-satellite 1208 

Precipitation Analysis (TMPA). In: Hossain, F., Gebremichael, M. (Eds.), Satellite Rainfall 1209 

Applications for Surface Hydrology. Springer Verlag, pp. 3–22. 1210 

Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R.J., Xie, P., 2014. Algorithm 1211 

Theoretical Basis Document (ATBD) Version 4- NASA Global Precipitation Measurement 1212 

(GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), PMM Website. 1213 

Interagency Advisory Committee on Water Data (IACWD), 1982. Guidelines for determining 1214 

flood flow frequency, Bulletin 17B. Reston, VA. 1215 

Jones, E., Oliphant, T., Peterson, P., Walt, S. van der, Colbert, S.C., Varoquaux, G., 2011. SciPy: 1216 

Open source scientific tools for Python. Comput. Sci. Eng. 13. 1217 

Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., 2004. CMORPH: A method that produces 1218 

global precipitation estimates from passive microwave and infrared data at high spatial and 1219 

temporal resolution. J. Hydrometeorol. 5, 487–503. 1220 

Lin, Y., Mitchell, K.E., 2005. The NCEP Stage II/IV hourly precipitation analyses: development 1221 

and applications. In: Preprints, 19th Conf. on Hydrology, American Meteorological Society, 1222 

San Diego, CA, 9-13 January 2005, Paper 1.2. pp. 2–5. 1223 



 52 

Mallakpour, I., Villarini, G., 2015. The changing nature of flooding across the central United 1224 

States. Nat. Clim. Chang. 5, 250–254. 1225 

Mantilla, R., Gupta, V.K., 2005. A GIS numerical framework to study the process basis of 1226 

scaling statistics in river networks. Geosci. Remote Sens. Lett. IEEE 2, 404–408. 1227 

McCuen, R.H., 1998. Hydrologic analysis and design, Mcgraw- Hill. 1228 

Mehran, A., AghaKouchak, A., 2014. Capabilities of satellite precipitation datasets to estimate 1229 

heavy precipitation rates at different temporal accumulations. Hydrol. Process. 28, 2262–1230 

2270. 1231 

Moser, B.A., Gallus  Jr., W.A., Mantilla, R., 2015. An initial assessment of radar data 1232 

assimilation on warm season rainfall forecasts for use in hydrologic models. Weather 1233 

Forecast. 30, 1491–1520. 1234 

Nikolopoulos, E.I., Anagnostou, E.N., Borga, M., 2013. Using High-Resolution Satellite Rainfall 1235 

Products to Simulate a Major Flash Flood Event in Northern Italy. J. Hydrometeorol. 14, 1236 

171–185. 1237 

Petersen-Øverleir, A., 2004. Accounting for heteroscedasticity in rating curve estimates. J. 1238 

Hydrol. 292, 173–181. 1239 

Petersen-Øverleir, A., Reitan, T., 2009. Accounting for rating curve imprecision in flood 1240 

frequency analysis using likelihood-based methods. J. Hydrol. 366, 89–100. 1241 

Petty, G.W., Krajewksi, W.F., 1996. Satellite estimation of precipitation over land. Hydrol. Sci. 1242 

J. 41, 433–451. 1243 

Potter, K.W., Walker, J.F., 1985. An Empirical Study of Flood Measurement Error. Water 1244 

Resour. Res. 21, 403–406. 1245 

Preisig, M., Zimmermann, T., 2010. Two-phase free-surface fluid dynamics on moving domains. 1246 

J. Comput. Phys. 229, 2740–2758. 1247 

Rogger, M., Kohl, B., Pirkl, H., Viglione, A., Komma, J., Kirnbauer, R., Merz, R., Blöschl, G., 1248 

2012. Runoff models and flood frequency statistics for design flood estimation in Austria – 1249 

Do they tell a consistent story? J. Hydrol. 456-457, 30–43. 1250 

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. 1251 



 53 

Assoc. 63, 1379–1389. 1252 

Shige, S., Kida, S., Ashiwake, H., Kubota, T., Aonashi, K., 2013. Improvement of TMI rain 1253 

retrievals in mountainous areas. J. Appl. Meteorol. Climatol. 52, 242–254. 1254 

Small, S.J., Jay, L.O., Mantilla, R., Curtu, R., Cunha, L.K., Fonley, M., Krajewski, W.F., 2013. 1255 

An asynchronous solver for systems of ODEs linked by a directed tree structure. Adv. 1256 

Water Resour. 53, 23–32. 1257 

Smith, J.A., Baeck, M.L., Villarini, G., Wright, D.B., Krajewski, W., 2013. Extreme Flood 1258 

Response: The June 2008 Flooding in Iowa. J. Hydrometeorol. 14, 1810–1825. 1259 

Smith, J.A., Villarini, G., Baeck, M.L., 2011. Mixture Distributions and the Hydroclimatology of 1260 

Extreme Rainfall and Flooding in the Eastern United States. J. Hydrometeorol. 12, 294–1261 

309. 1262 

Smith, M.B., Seo, D.-J., Koren, V.I., Reed, S.M., Zhang, Z., Duan, Q., Moreda, F., Cong, S., 1263 

2004. The distributed model intercomparison project (DMIP): motivation and experiment 1264 

design. J. Hydrol. 298, 4–26. 1265 

Sorooshian, S., Hsu, K.-L., Gao, X., Gupta, H. V., Imam, B., Braithwaite, D., 2000. Evaluation 1266 

of PERSIANN System Satellite-Based Estimates of Tropical Rainfall. Bull. Am. Meteorol. 1267 

Soc. 81, 2035–2046. 1268 

Stampoulis, D., Anagnostou, E.N., Nikolopoulos, E.I., 2013. Assessment of High-Resolution 1269 

Satellite-Based Rainfall Estimates over the Mediterranean during Heavy Precipitation 1270 

Events. J. Hydrometeor 14, 1500–1514. 1271 

Tian, Y., Peters-Lidard, C.D., 2007. Systematic anomalies over inland water bodies in satellite-1272 

based precipitation estimates. Geophys. Res. Lett. 34, L14403. 1273 

Tian, Y., Peters-Lidard, C.D., Choudhury, B.J., Garcia, M., 2007. Multitemporal Analysis of 1274 

TRMM-Based Satellite Precipitation Products for Land Data Assimilation Applications. J. 1275 

Hydrometeorol. 8, 1165–1183. 1276 

Tian, Y., Peters-Lidard, C.D., Eylander, J.B., Joyce, R.J., Huffman, G.J., Adler, R.F., Hsu, K., 1277 

Turk, F.J., Garcia, M., Zeng, J., 2009. Component analysis of errors in satellite-based 1278 

precipitation estimates. J. Geophys. Res. 114, D24101. 1279 



 54 

Troutman, B.M., Karlinger, M.R., 2003. Regional flood probabilities. Water Resour. Res. 39, 1280 

1095. 1281 

U.S. Weather Bureau, 1958. Rainfall intensity-frequency regime, Part 2-Southeastern United 1282 

States, Technical Paper No. 29. 1283 

Villarini, G., Krajewski, W.F., 2010. Review of the Different Sources of Uncertainty in Single 1284 

Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 31, 107–129. 1285 

Villarini, G., Smith, J.A., Baeck, M.L., Vitolo, R., Stephenson, D.B., Krajewski, W.F., 2011. On 1286 

the frequency of heavy rainfall for the Midwest of the United States. J. Hydrol. 400, 103–1287 

120. 1288 

Villarini, G., Smith, J.A., Vitolo, R., Stephenson, D.B., 2013. On the temporal clustering of US 1289 

floods and its relationship to climate teleconnection patterns. Int. J. Climatol. 33, 629–640. 1290 

Villarini, G., Strong, A., 2014. Roles of climate and agricultural practices in discharge changes 1291 

in an agricultural watershed in Iowa. Agric. Ecosyst. Environ. 188, 204–211. 1292 

Walshaw, D., 2013. Generalized Extreme Value DistributionBased in part on the article 1293 

“Generalized extreme value distribution” by Jan Beirlant and Gunther Matthys, which 1294 

appeared in the Encyclopedia of Environmetrics. In: Encyclopedia of Environmetrics. John 1295 

Wiley & Sons, Ltd, Chichester, UK. 1296 

Walt, S. van der, Colbert, S.C., Varoquaux, G., 2011. The NumPy Array: A Structure for 1297 

Efficient Numerical Computation. Comput. Sci. Eng. 13. 1298 

Wilson, L.L., Foufoula-Georgiou, E., 1990. Regional Rainfall Frequency Analysis via Stochastic 1299 

Storm Transposition. J. Hydraul. Eng. 116, 859–880. 1300 

Wright, D.B., Smith, J.A., Baeck, M.L., 2014a. Critical Examination of Area Reduction Factors. 1301 

J. Hydrol. Eng. 19, 769–776. 1302 

Wright, D.B., Smith, J.A., Baeck, M.L., 2014b. Flood frequency analysis using radar rainfall 1303 

fields and stochastic storm transposition. Water Resour. Res. 50, 1592–1615. 1304 

Wright, D.B., Smith, J.A., Villarini, G., Baeck, M.L., 2013. Estimating the frequency of extreme 1305 

rainfall using weather radar and stochastic storm transposition. J. Hydrol. 488, 150–165. 1306 

Wright, D.B., Smith, J.A., Villarini, G., Baeck, M.L., 2014c. Long-Term High-Resolution Radar 1307 



 55 

Rainfall Fields for Urban Hydrology. JAWRA J. Am. Water Resour. Assoc. 50, 713–734. 1308 

Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C., Yang, S., 2007. A Gauge-1309 

Based Analysis of Daily Precipitation over East Asia. J. Hydrometeorol. 8, 607. 1310 

Yarnell, D.L., 1935. Rainfall Intensity-Frequency Data. Washington, D. C. 1311 

 1312 


